

SANYO Semiconductors DATA SHEET

LB1847 — Monolithic Digital IC PWM Current Control Type Stepping Motor Driver

Overview

The LB1847 is a driver IC for stepping motors with PWM current control bipolar drive (fixed OFF time). A special feature of this IC is that VREF voltage is constant while the current can be set in 15 steps, allowing drive of motors ranging from 1-2 phase exciter types to 4W 1-2 phase exciter types. The current decay pattern can also be selected (SLOW DECAY, FAST DECAY, MIX DECAY) to increase the decay of regenerative current at chopping OFF, thereby improving response characteristics. This is especially useful for carriage and paper feed stepping motors in printers and similar applications where high-precision control and low vibrations are required.

Features

- PWM current control (fixed OFF time)
- Load current digital selector (1-2, W1-2, 2W1-2, 4W1-2 phase exciter drive possible)
- Selectable current decay pattern (SLOW DECAY, FAST DECAY, MIX DECAY)
- Simultaneous ON prevention function (feed-through current prevention)
- Noise canceler
- Built-in thermal shutdown circuit
- Built-in logic low-voltage OFF circuit

Specifications

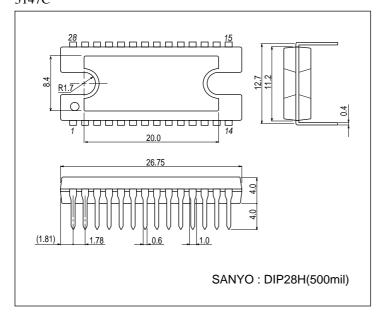
Absolute Maximum Ratings at Ta = 25°C

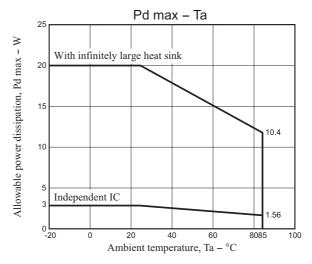
Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	V _{BB}		50	V
Output peek current	I _O peak	t _W = 20μs	1.75	Α
Output continuous current	I _O max		1.5	Α
Logic supply voltage	Vcc		7.0	Α
Logic input voltage range	VIN		-0.3 to V _{CC}	V
Emitter output voltage	٧E		1.0	V
Allowable power dissipation	Pd max	Independent IC	3.0	W
		With infinitely large heat sink	20	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

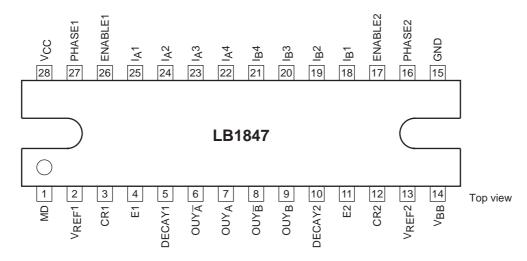
LB1847

Allowable Operating Ranges at $Ta=25^{\circ}C$

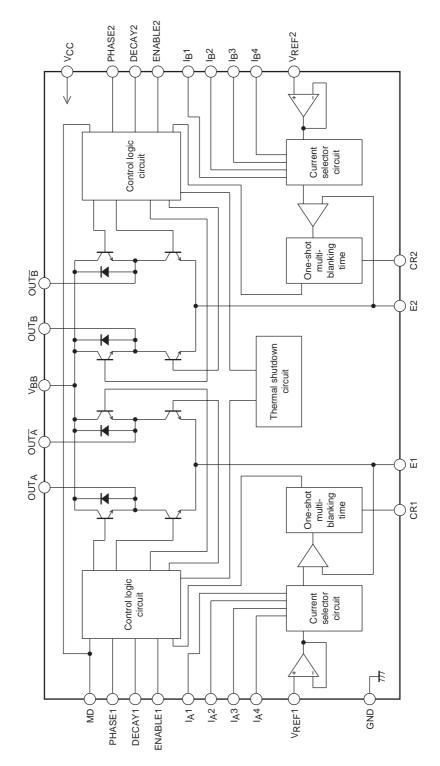

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage range	V _{BB}		10 to 45	V
Logic supply voltage	VCC		4.75 to 5.25	V
Reference voltage range	V _{REF}		0.0 to 3.0	V


Electrical Characteristics at Ta = 25 °C, $V_{BB} = 45$ V, $V_{CC} = 5$ V, $V_{REF} = 1.52$ V

Parameter	Symbol	Conditions	Г		Unit	
	Cymbol	Conditions	min	typ	max	Orme
Output Block		·				
Output stage supply voltage	I _{BB} ON		2.3	3.5	5.0	mA
	I _{BB} OFF		0.5	0.8	1.1	mA
Output saturation voltage	V _O (sat)1	$I_O = +1.0A$, sink		1.2	1.6	V
	V _O (sat)2	$I_O = +1.5A$, sink		1.5	1.9	V
	V _O (sat)3	I _O = -1.0A, source		1.9	2.2	V
	V _O (sat)4	I _O = -1.5A, source		2.2	2.4	٧
Output leak current	I _O (leak)1	$V_O = V_{BB}$, sink			50	μΑ
	I _O (leak)2	V _O = 0V, source	-50			μΑ
Output sustain voltage	V _{SUS}	L = 15mH, I _O = 1.5A, Guaranteed design value *	45			V
Logic Block						
Logic supply voltage	I _{CC} ON	I ₄ = 3.2V, I ₃ = 3.2V, I ₂ = 3.2V, I ₁ = 3.2V	19.5	26	36.5	mA
	I _{CC} OFF	ENABLE = 3.2V	10.5	15	19.5	mA
Input voltage	V _{IH}		3.2			V
	V _{IL}				0.8	V
Input current	lн	V _{IH} = 3.2V			100	μА
	I _I L	V _{IL} = 0.8V	-10			μΑ
Sensing voltage	٧E	I ₄ = 3.2V, I ₃ = 3.2V, I ₂ = 3.2V, I ₁ = 3.2V	0.470	0.50	0.525	V
		I ₄ = 3.2V, I ₃ = 3.2V, I ₂ = 3.2V, I ₁ = 0.8V	0.445	0.48	0.505	V
		I ₄ = 3.2V, I ₃ = 3.2V, I ₂ = 0.8V, I ₁ = 3.2V	0.425	0.46	0.485	V
		I ₄ = 3.2V, I ₃ = 3.2V, I ₂ = 0.8V, I ₁ = 0.8V	0.410	0.43	0.465	V
		I ₄ = 3.2V, I ₃ = 0.8V, I ₂ = 3.2V, I ₁ = 3.2V	0.385	0.41	0.435	V
		I ₄ = 3.2V, I ₃ = 0.8V, I ₂ = 3.2V, I ₁ = 0.8V	0.365	0.39	0.415	V
		I ₄ = 3.2V, I ₃ = 0.8V, I ₂ = 0.8V, I ₁ = 3.2V	0.345	0.37	0.385	V
		I ₄ = 3.2V, I ₃ = 0.8V, I ₂ = 0.8V, I ₁ = 0.8V	0.325	0.35	0.365	V
		I ₄ = 0.8V, I ₃ = 3.2V, I ₂ = 3.2V, I ₁ = 3.2V	0.280	0.30	0.325	V
		I ₄ = 0.8V, I ₃ = 3.2V, I ₂ = 3.2V, I ₁ = 0.8V	0.240	0.26	0.285	V
		I ₄ = 0.8V, I ₃ = 3.2V, I ₂ = 0.8V, I ₁ = 3.2V	0.195	0.22	0.235	V
		I ₄ = 0.8V, I ₃ = 3.2V, I ₂ = 0.8V, I ₁ = 0.8V	0.155	0.17	0.190	V
		I ₄ = 0.8V, I ₃ = 0.8V, I ₂ = 3.2V, I ₁ = 3.2V	0.115	0.13	0.145	V
		I ₄ = 0.8V, I ₃ = 0.8V, I ₂ = 3.2V, I ₁ = 0.8V	0.075	0.09	0.100	V
Reference current	I _{REF}	V _{REF} = 1.5V	-0.5			μΑ
CR pin current	ICR	CR = 1.0V	-4.6		-1.0	mA
MD pin current	I _{MD}	MD = 1.0V, CR = 4.0V	-5.0			μΑ
DECAY pin current Low	IDECL	V _{DEC} = 0.8V	-10			μΑ
DECAY pin current High	IDECH	V _{DEC} = 3.2V			5	μΑ
Thermal shutdown temperature	TSD			170		°C
Logic ON voltage	L _{VSD} 1		3.35	3.65	3.95	V
Logic OFF voltage	L _{VSD} 2		3.20	3.50	3.80	V
LVSD hysteresis width	ΔL _{VSD}		0.065	0.15	0.23	V


Package Dimensions

unit : mm (typ) 3147C



Pin Assignment

Block Diagram

LB1847

Pin Function

Pin No.	Pin name	Function
1	MD	Sets the OFF time for FAST mode and SLOW mode in MIX DECAY.
		Setting input range: 4V to 1.5V.
2	V _{REF} 1	Output set current reference supply pin.
13	V _{REF} 2	Setting voltage range: 0V to 3V.
3	CR1	Output OFF time setting pin for switching operation.
12	CR2	
4	E1	Pin for controlling the set current with sensing resistor RE.
11	E2	
5	DECAY1	SLOW mode/FAST mode selector pin.
10	DECAY2	DECAY2 SLOW DECAY: H
		FAST DECAY: L
6	OUTA	Output pin.
7	OUTA	
8	OUTB	
9	OUTB	
14	V _{BB}	Output stage supply voltage pin.
15	GND	Ground pin.
27	PHASE1	Output phase selector input pin
16	PHASE2	
26	ENABLE1	Output ON/OFF setting input pin.
17	ENABLE2	
22,23	I _A 4,I _A 3	Output set current digital input pin.
24,25	I _A 2,I _A 1	15-stage voltage setting.
21,20	I _B 4,I _B 3	
19,18	I _B 2,I _B 1	
28	Vcc	Logic block supply voltage pin

Truth Table

PHASE	ENABLE	OUTA	OUTA
Н	L	Н	L
L	L	L	Н
-	Н	OFF	OFF

Set Current Truth Table

I _A 4	I _A 3	I _A 2	I _A 1	Set current lout	Current ratio
1	1	1	1	$11.5/11.5 \times V_{REF}/3.04RE = Iout$	100
1	1	1	0	$11.0/11.5 \times V_{REF}/3.04RE = Iout$	95.65
1	1	0	1	$10.5/11.5 \times V_{REF}/3.04RE = Iout$	91.30
1	1	0	0	$10.0/11.5 \times V_{REF}/3.04RE = Iout$	86.95
1	0	1	1	$9.5/11.5 \times V_{REF}/3.04RE = Iout$	82.61
1	0	1	0	9.0/11.5 × V _{REF} /3.04RE = lout	78.26
1	0	0	1	$8.5/11.5 \times V_{REF}/3.04RE = Iout$	73.91
1	0	0	0	$8.0/11.5 \times V_{REF}/3.04RE = Iout$	69.56
0	1	1	1	$7.0/11.5 \times V_{REF}/3.04RE = Iout$	60.87
0	1	1	0	$6.0/11.5 \times V_{REF}/3.04RE = Iout$	52.17
0	1	0	1	$5.0/11.5 \times V_{REF}/3.04RE = Iout$	43.48
0	1	0	0	4.0/11.5 × V _{REF} /3.04RE = lout	34.78
0	0	1	1	$3.0/11.5 \times V_{REF}/3.04RE = Iout$	26.08
0	0	1	0	2.0/11.5 × V _{REF} /3.04RE = lout	17.39

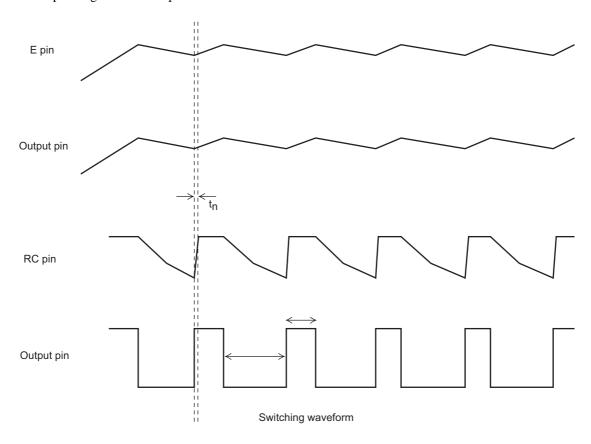
^{*} Current ratio (%) is the calculated set current value.

Current Decay Switching Truth Table

Current decay mode	DECAY pin	MD pin	Output chopping
SLOW DECAY	Н	L	Upper-side chopping
FAST DECAY	L	L	Dual-side chopping
MIX DECAY	L	4V to 1.5V input voltage setting	CR voltage > MD: dual-side chopping CR voltage < MD: upper-side chopping

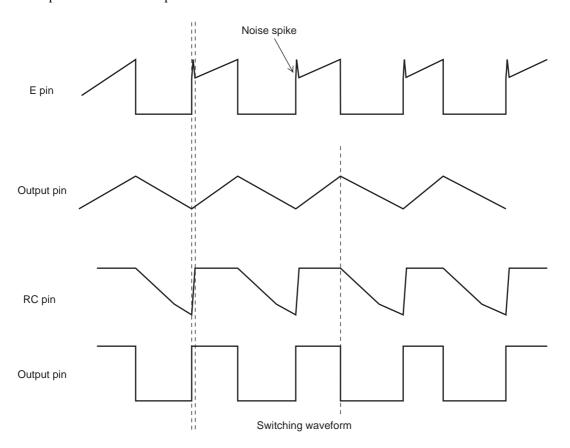
LB1847

Sequence Table

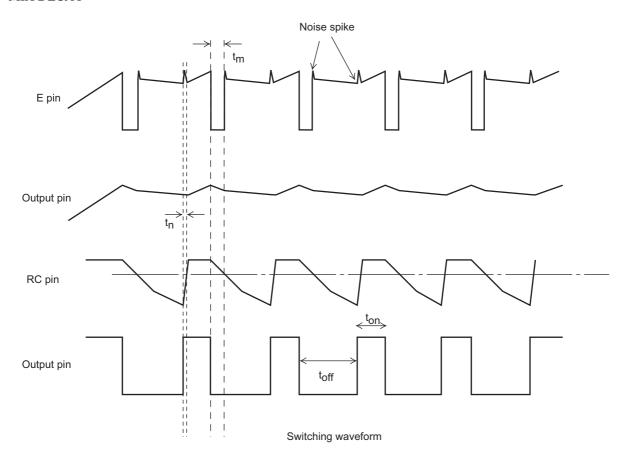

564	uen	<u> </u>	abi	Phas	se A						Phas	se B						
No.	I _A 4	I _A 3	I _A 2	I _A 1	ENA1	PHA1	lout	I _B 4	I _B 3	I _B 2	I _B 1	ENA2	PHA2	lout	Phase 1-2	Phase W1-2	Phase 2W1-2	Phase 4W1-2
0	1	1	1	1	0	0	100%	0	0	1	0	1	*	0%	0	0	0	0
1	1	1	1	1	0	0	100	0	0	1	0	0	0	17.39				0
2	1	1	1	1	0	0	100	0	0	1	1	0	0	26.08			0	0
3	1	1	1	0	0	0	95.65	0	1	0	0	0	0	34.78				0
4	1	1	0	1	0	0	91.30	0	1	0	1	0	0	43.48		0	0	0
5	1	1	0	0	0	0	86.95	0	1	1	0	0	0	52.17				0
6	1	0	1	1	0	0	82.61	0	1	1	1	0	0	60.87			0	0
7	1	0	1	0	0	0	78.26	1	0	0	0	0	0	69.56				0
8	1	0	0	1	0	0	73.91	1	0	0	1	0	0	73.91	0	0	0	0
9	1	0	0	0	0	0	69.56	1	0	1	0	0	0	78.26				0
10	0	1	1	1	0	0	60.87	1	0	1	1	0	0	82.61			0	0
11	0	1	1	0	0	0	52.17	1	1	0	0	0	0	86.95				0
12	0	1	0	1	0	0	43.48	1	1	0	1	0	0	91.30		0	0	0
13	0	1	0	0	0	0	34.78	1	1	1	0	0	0	95.65				0
14	0	0	1	1	0	0	26.08	1	1	1	1	0	0	100			0	0
15	0	0	1	0	0	0	17.39	1	1	1	1	0	0	100				0
16	0	0	0	1	1	*	0	1	1	1	1	0	0	100	0	0	0	0
17	0	0	1	0	0	1	17.39	1	1	1	1	0	0	100				0
18	0	0	1	1	0	1	26.08	1	1	1	1	0	0	100			0	0
19	0	1	0	0	0	1	34.78	1	1	1	0	0	0	95.65				0
20	0	1	0	1	0	1	43.48	1	1	0	1	0	0	91.30		0	0	0
21	0	1	1	0	0	1	52.17	1	1	0	0	0	0	86.95				0
22	0	1	1	1	0	1	60.87	1	0	1	1	0	0	82.61			0	0
23	1	0	0	0	0	1	69.56	1	0	1	0	0	0	78.26				0
24	1	0	0	1	0	1	73.91	1	0	0	1	0	0	73.91	0	0	0	0
25	1	0	1	0	0	1	78.26	1	0	0	0	0	0	69.56				0
26	1	0	1	1	0	1	82.61	0	1	1	1	0	0	60.87			0	0
27	1	1	0	0	0	1	86.95	0	1	1	0	0	0	52.17		_	_	0
28	1	1	0	1	0	1	91.30	0	1	0	1	0	0	43.48		0	0	0
29	1	1	1	0	0	1	95.65	0	1	0	0	0	0	34.78				0
30	1	1	1	1	0	1	100	0	0	1	1	0	0	26.08			0	0
31	1	1	1	1	0	1	100	0	0	1	0	0	0	17.39				0

^{*} Don't care

Note: lout percentage (%) is the calculated setting value.


Switch Timing Chart During PWM Drive

SLOW DECAY (upper-side chopping)
DECAY pin: High MD pin: Low



FAST DECAY DECAY pin: Low

MD pin: Low

MIX DECAY

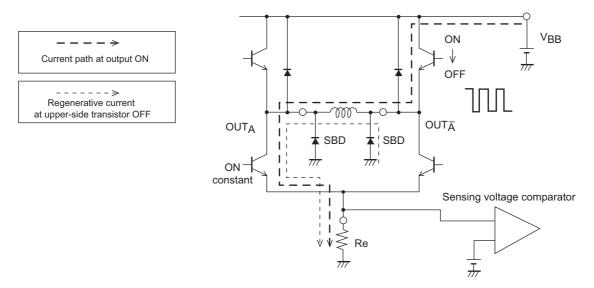
ton: Output ON time toff: Output OFF time

tm : FAST DECAY time in MIX DECAY mode

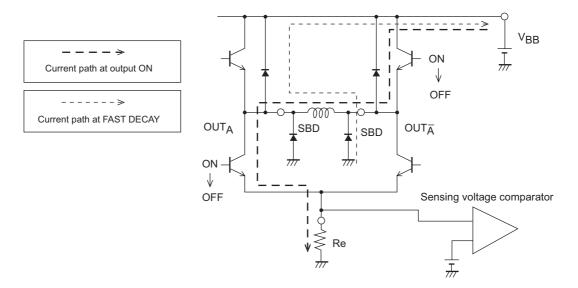
tn : Noise cancelling time

MIX DECAY logic setting

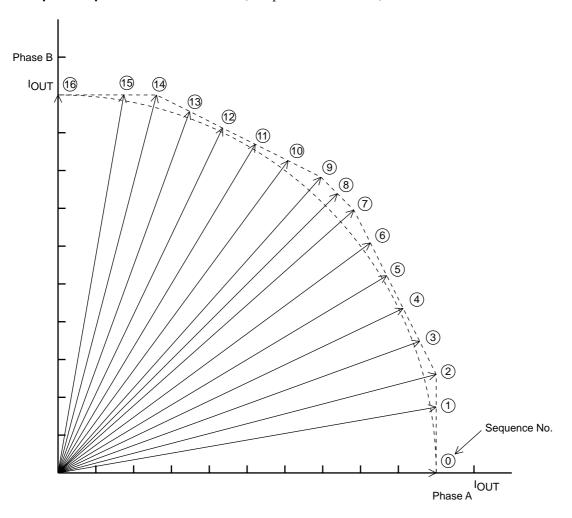
DECAY pin: L


MD pin: 1.5V to 4.0V voltage setting

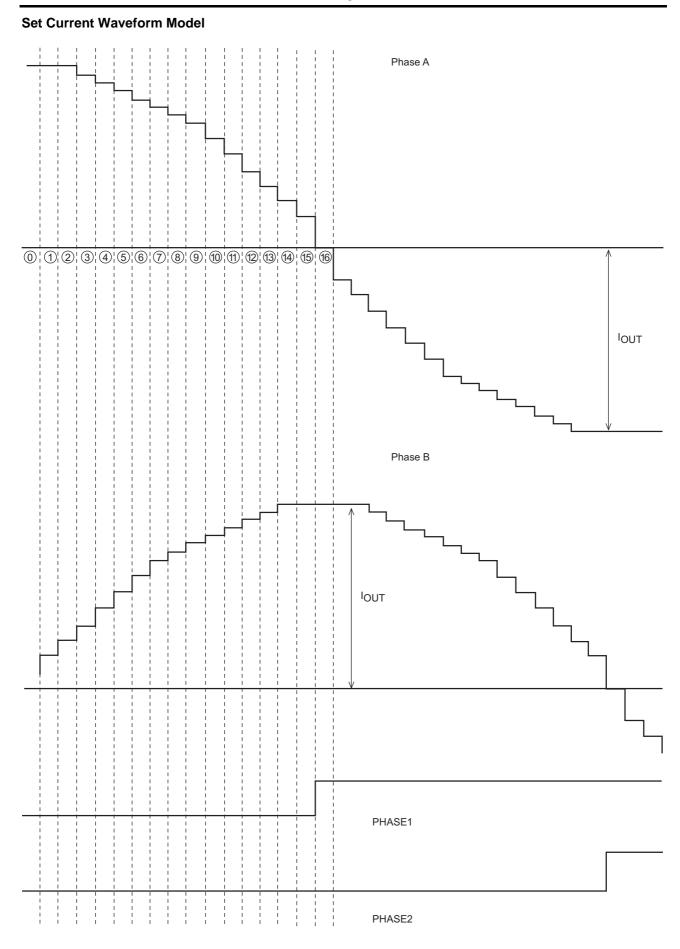
CR voltage and MD pin voltage are compared to select dual-side chopping or upper-side chopping.


CR voltage > MD pin voltage: dual-side chopping CR voltage < MD pin voltage: upper-side chopping

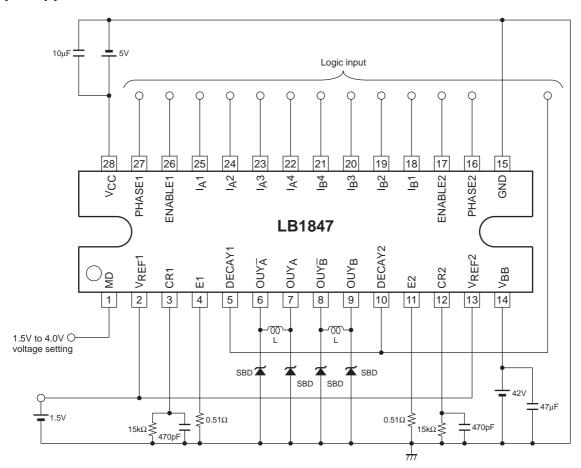
SLOW DECAY Current Path


Regenerative current during upper-side transistor switching operation

FAST DECAY Current Path



Composite Spectrum of Set Current (1 step normalized to 90°)



No.	θ	Rotation angle	Composite spectrum
0	θ_0	0°	100.0
1	θ1	9.87°	101.5
2	θ_2	14.6°	103.35
3	θ_3	20.0°	101.78
4	θ4	25.5°	101.12
5	θ5	30.96°	101.4
6	θ_{6}	36.38°	102.61
7	θ7	41.63°	104.7
8	θ8	45.0°	104.5
9	θ9	48.37°	104.7
10	θ10	53.62°	102.61
11	θ11	59.04°	101.4
12	θ ₁₂	64.5°	101.12
13	θ 13	70.0°	101.78
14	θ14	75.4°	103.35
15	θ 1 5	80.13°	101.5
16	θ 16	90.0°	100.0

^{*} Rotation angle and composite spectrum are calculated values.

Sample Application Circuit

Notes on Usage

1. External diodes

Because this IC uses upper-side transistor switching in SLOW DECAY mode and dual-side transistor switching in FAST DECAY mode, it requires external diodes between the OUT pins and ground, for the regenerative current during switching OFF. Use Schottky barrier diodes with low VF.

2. VREF pin

Because the VREF pin serves for input of the set current reference voltage, precautions against noise must be taken. The input voltage range is 0 to 3.0V.

3. GND pin

The ground circuit for this IC must be designed so as to allow for high-current switching. Blocks where high current flows must use low-impedance patterns and must be removed from small-signal lines. Especially the ground connection for the sensing resistor RE at pin E, and the ground connection for the Schottky barrier diodes should be in close proximity to the IC ground.

The capacitors between V_{CC} and ground, and V_{BB} and ground should be placed close to the V_{CC} and V_{BB} pins, respectively.

4. Simultaneous ON prevention function

This IC incorporates a circuit to prevent feed-through current when phase switching. For reference, the output ON and OFF delay times at PHASE and ENABLE switching are given below.

Reference Data * typical value

		Sink side	Source side	
PHASE switching	ON delay time	1.9μs	2.2μs	
$(Low \rightarrow Hi)$	OFF deley time	0.8μs	1.8μs	
PHASE switching	ON delay time	1.4µs	1.7μs	
$(Hi \rightarrow Low)$	OFF deley time	0.9μs	1.35µs	
ENABLE switching	ON delay time	2.15µs	2.75µs	
	OFF deley time	1.2μs	5.8μs	

5. Noise canceler

This IC has a noise canceling function to prevent malfunction due to noise spikes generated when switching ON. The noise cancel time to is determined by internal resistance of the CR pin and the constant of the externally connected CR components. The constant also determines the switching OFF time.

Figure 1 shows the internal configuration at the CR pin, and Figure 2 the CR pin constant setting range.

Equation when logic voltage $V_{CC}=5V$ CR pin voltage $E1=V_{CC}\times R / (R1+R2+R)$ [V] Noise cancel time tn \approx (R1+R2)× C × 1n {(E1-1.5) / (E1-4.0)} [s] Switching OFF time toff \approx -R × C × 1n (1.5 / E1) [s] Internal resistance at CR pin: R1 = 1k Ω , R2 = 300 Ω (typ.)

*The CR constant setting range in Figure 2 on page 15 is given for reference. It applies to a switching OFF time in the range from 8 to 100µs. The switching time can also be made higher than 100 ms. However, a capacitor value of more than several thousand pF will result in longer noise canceling time, which can cause the output current to become higher than the set current. The longer switching OFF time results in higher output current ripple, causing a drop in average current and rotation efficiency. When keeping the switching OFF time within 100 ms, it is recommended to stay within the CR constant range shown in Figure 2.

Internal configuration at CR pin

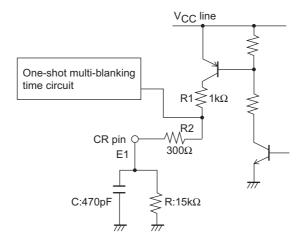
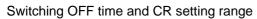
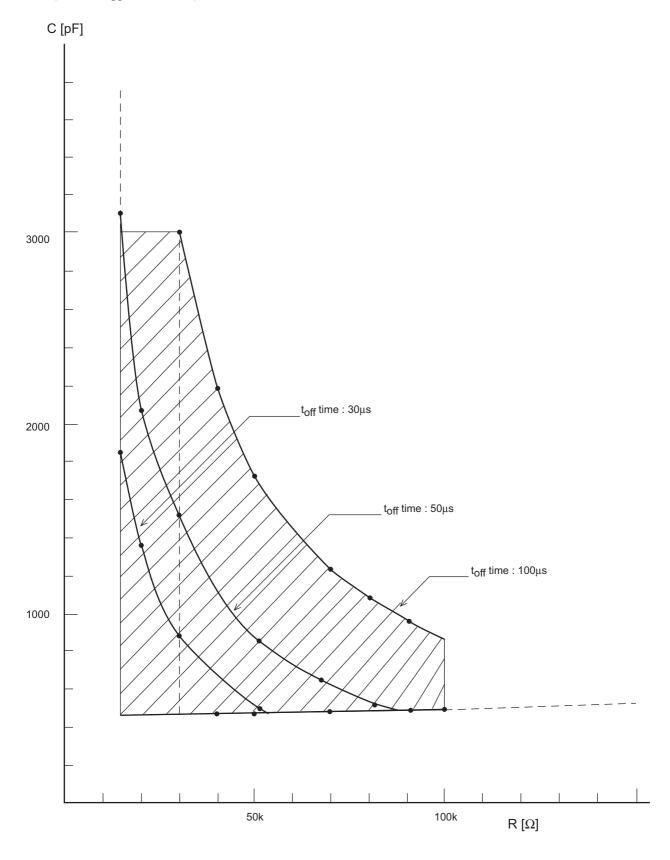
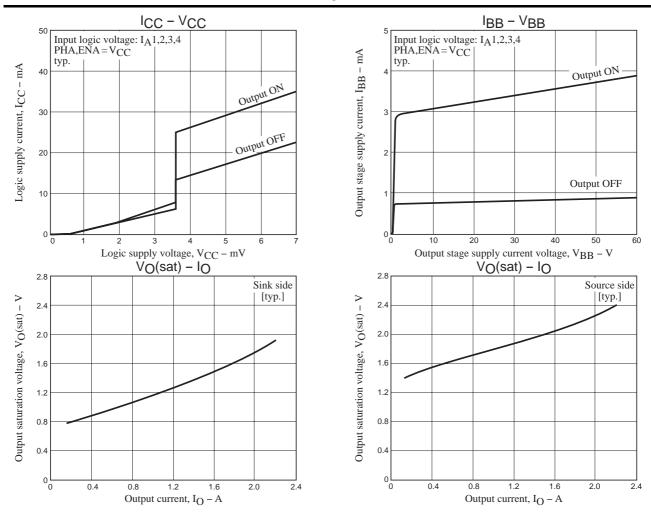





Figure 1

(toff time: approx. 8 to 100µs)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2008. Specifications and information herein are subject to change without notice.